Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The transverse momentum ($$p_{\textrm{T}}$$ ) differential production cross section of the promptly produced charm-strange baryon$$\mathrm {\Xi _{c}^{0}}$$ (and its charge conjugate$$\overline{\mathrm {\Xi _{c}^{0}}}$$ ) is measured at midrapidity via its hadronic decay into$$\mathrm{\pi ^{+}}\Xi ^{-}$$ in p–Pb collisions at a centre-of-mass energy per nucleon–nucleon collision$$\sqrt{s_{\textrm{NN}}}~=~5.02$$ TeV with the ALICE detector at the LHC. The$$\mathrm {\Xi _{c}^{0}}$$ nuclear modification factor ($$R_{\textrm{pPb}}$$ ), calculated from the cross sections in pp and p–Pb collisions, is presented and compared with the$$R_{\textrm{pPb}}$$ of$$\mathrm {\Lambda _{c}^{+}}$$ baryons. The ratios between the$$p_{\textrm{T}}$$ -differential production cross section of$$\mathrm {\Xi _{c}^{0}}$$ baryons and those of$$\mathrm {D^0}$$ mesons and$$\mathrm {\Lambda _{c}^{+}}$$ baryons are also reported and compared with results at forward and backward rapidity from the LHCb Collaboration. The measurements of the production cross section of prompt$$\Xi ^0_\textrm{c}$$ baryons are compared with a model based on perturbative QCD calculations of charm-quark production cross sections, which includes only cold nuclear matter effects in p–Pb collisions, and underestimates the measurement by a factor of about 50. This discrepancy is reduced when the data is compared with a model that includes string formation beyond leading-colour approximation or in which hadronisation is implemented via quark coalescence. The$$p_{\textrm{T}}$$ -integrated cross section of prompt$$\Xi ^0_\textrm{c}$$ -baryon production at midrapidity extrapolated down to$$p_{\textrm{T}}$$ = 0 is also reported. These measurements offer insights and constraints for theoretical calculations of the hadronisation process. Additionally, they provide inputs for the calculation of the charm production cross section in p–Pb collisions at midrapidity.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            This Letter presents the first measurement of event-by-event fluctuations of the net number (difference between the particle and antiparticle multiplicities) of multistrange hadrons and and its correlation with the net-kaon number using the data collected by the ALICE Collaboration in pp, p-Pb, and Pb-Pb collisions at a center-of-mass energy per nucleon pair . The statistical hadronization model with a correlation over three units of rapidity between hadrons having the same and opposite strangeness content successfully describes the results. On the other hand, string-fragmentation models that mainly correlate strange hadrons with opposite strange quark content over a small rapidity range fail to describe the data. © 2025 CERN, for the ALICE Collaboration2025CERNmore » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Abstract The total charm-quark production cross section per unit of rapidity$$\textrm{d}\sigma ({{\textrm{c}}\overline{\textrm{c}}})/\textrm{d}y$$ , and the fragmentation fractions of charm quarks to different charm-hadron species$$f(\textrm{c}\rightarrow {\textrm{h}}_{\textrm{c}})$$ , are measured for the first time in p–Pb collisions at$$\sqrt{s_\textrm{NN}} = 5.02~\text {Te}\hspace{-1.00006pt}\textrm{V} $$ at midrapidity ($$-0.96<0.04$$ in the centre-of-mass frame) using data collected by ALICE at the CERN LHC. The results are obtained based on all the available measurements of prompt production of ground-state charm-hadron species:$$\textrm{D}^{0}$$ ,$$\textrm{D}^{+}$$ ,$$\textrm{D}_\textrm{s}^{+}$$ , and$$\mathrm {J/\psi }$$ mesons, and$$\Lambda _\textrm{c}^{+}$$ and$$\Xi _\textrm{c}^{0}$$ baryons. The resulting cross section is$$ \textrm{d}\sigma ({{\textrm{c}}\overline{\textrm{c}}})/\textrm{d}y =219.6 \pm 6.3\;(\mathrm {stat.}) {\;}_{-11.8}^{+10.5}\;(\mathrm {syst.}) {\;}_{-2.9}^{+8.3}\;(\mathrm {extr.})\pm 5.4\;(\textrm{BR})\pm 4.6\;(\mathrm {lumi.}) \pm 19.5\;(\text {rapidity shape})+15.0\;(\Omega _\textrm{c}^{0})\;\textrm{mb} $$ , which is consistent with a binary scaling of pQCD calculations from pp collisions. The measured fragmentation fractions are compatible with those measured in pp collisions at$$\sqrt{s} = 5.02$$ and 13 TeV, showing an increase in the relative production rates of charm baryons with respect to charm mesons in pp and p–Pb collisions compared with$$\mathrm {e^{+}e^{-}}$$ and$$\mathrm {e^{-}p}$$ collisions. The$$p_\textrm{T}$$ -integrated nuclear modification factor of charm quarks,$$R_\textrm{pPb}({\textrm{c}}\overline{\textrm{c}})= 0.91 \pm 0.04\;\mathrm{(stat.)} ^{+0.08}_{-0.09}\;\mathrm{(syst.)} ^{+0.05}_{-0.03}\;\mathrm{(extr.)} \pm 0.03\;\mathrm{(lumi.)}$$ , is found to be consistent with unity and with theoretical predictions including nuclear modifications of the parton distribution functions.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            A<sc>bstract</sc> ThepT-differential production cross sections of non-prompt D0, D+, and$$ {\textrm{D}}_{\textrm{s}}^{+} $$ mesons originating from beauty-hadron decays are measured in proton–proton collisions at a centre-of-mass energy$$ \sqrt{s} $$ = 13 TeV. The measurements are performed at midrapidity, |y|<0.5, with the data sample collected by ALICE from 2016 to 2018. The results are in agreement with predictions from several perturbative QCD calculations. The fragmentation fraction of beauty quarks to strange mesons divided by the one to non-strange mesons,fs/(fu+fd), is found to be 0.114 ± 0.016 (stat.) ± 0.006 (syst.) ± 0.003 (BR) ± 0.003 (extrap.). This value is compatible with previous measurements at lower centre-of-mass energies and in different collision systems in agreement with the assumption of universality of fragmentation functions. In addition, the dependence of the non-prompt D meson production on the centre-of-mass energy is investigated by comparing the results obtained at$$ \sqrt{s} $$ = 5.02 and 13 TeV, showing a hardening of the non-prompt D-mesonpT-differential production cross section at higher$$ \sqrt{s} $$ . Finally, the$$ \textrm{b}\overline{\textrm{b}} $$ production cross section per unit of rapidity at midrapidity is calculated from the non-prompt D0, D+,$$ {\textrm{D}}_{\textrm{s}}^{+} $$ , and$$ {\Lambda}_{\textrm{c}}^{+} $$ hadron measurements, obtaining$$ \textrm{d}\sigma /\textrm{d}y=75.2\pm 3.2\left(\textrm{stat}.\right)\pm 5.2{\left(\textrm{syst}.\right)}_{-3.2}^{+12.3}\left(\textrm{extrap}.\right) $$ μb.more » « less
- 
            The two-particle momentum correlation functions between charm mesons ( and ) and charged light-flavor mesons ( and ) in all charge combinations are measured for the first time by the ALICE Collaboration in high-multiplicity proton–proton collisions at a center-of-mass energy of . For DK and pairs, the experimental results are in agreement with theoretical predictions of the residual strong interaction based on quantum chromodynamics calculations on the lattice and chiral effective field theory. In the case of and pairs, tension between the calculations including strong interactions and the measurement is observed. For all particle pairs, the data can be adequately described by Coulomb interaction only, indicating a shallow interaction between charm and light-flavor mesons. Finally, the scattering lengths governing the residual strong interaction of the and systems are determined by fitting the experimental correlation functions with a model that employs a Gaussian potential. The extracted values are small and compatible with zero. © 2024 CERN, for the ALICE Collaboration2024CERNmore » « less
- 
            The inclusive production of the charm-strange baryon is measured for the first time via its semileptonic decay into at midrapidity ( ) in proton-proton (pp) collisions at the center-of-mass energy with the ALICE detector at the LHC. The transverse momentum ( ) differential cross section multiplied by the branching ratio is presented in the interval . The branching-fraction ratio is measured to be (stat) (syst). Comparisons with other experimental measurements, as well as with theoretical calculations, are presented. © 2024 CERN, for the ALICE Collaboration2024CERNmore » « less
- 
            Measurements of the -dependent flow vector fluctuations in Pb–Pb collisions at using azimuthal correlations with the ALICE experiment at the Large Hadron Collider are presented. A four-particle correlation approach [ALICE Collaboration, ] is used to quantify the effects of flow angle and magnitude fluctuations separately. This paper extends previous studies to additional centrality intervals and provides measurements of the -dependent flow vector fluctuations at with two-particle correlations. Significant -dependent fluctuations of the flow vector in Pb–Pb collisions are found across different centrality ranges, with the largest fluctuations of up to being present in the 5% most central collisions. In parallel, no evidence of significant -dependent fluctuations of or is found. Additionally, evidence of flow angle and magnitude fluctuations is observed with more than significance in central collisions. These observations in collisions indicate where the classical picture of hydrodynamic modeling with a common symmetry plane breaks down. This has implications for hard probes at high , which might be biased by -dependent flow angle fluctuations of at least 23% in central collisions. Given the presented results, existing theoretical models should be reexamined to improve our understanding of initial conditions, quark–gluon plasma properties, and the dynamic evolution of the created system. ©2024 CERN, for the ALICE Collaboration2024CERNmore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
